Computer Science > Performance
[Submitted on 16 May 2023]
Title:Case Study for Running Memory-Bound Kernels on RISC-V CPUs
View PDFAbstract:The emergence of a new, open, and free instruction set architecture, RISC-V, has heralded a new era in microprocessor architectures. Starting with low-power, low-performance prototypes, the RISC-V community has a good chance of moving towards fully functional high-end microprocessors suitable for high-performance computing. Achieving progress in this direction requires comprehensive development of the software environment, namely operating systems, compilers, mathematical libraries, and approaches to performance analysis and optimization. In this paper, we analyze the performance of two available RISC-V devices when executing three memory-bound applications: a widely used STREAM benchmark, an in-place dense matrix transposition algorithm, and a Gaussian Blur algorithm. We show that, compared to x86 and ARM CPUs, RISC-V devices are still expected to be inferior in terms of computation time but are very good in resource utilization. We also demonstrate that well-developed memory optimization techniques for x86 CPUs improve the performance on RISC-V CPUs. Overall, the paper shows the potential of RISC-V as an alternative architecture for high-performance computing.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.