Computer Science > Multimedia
[Submitted on 3 May 2023]
Title:Datasheet for Subjective and Objective Quality Assessment Datasets
View PDFAbstract:Over the years, many subjective and objective quality assessment datasets have been created and made available to the research community. However, there is no standard process for documenting the various aspects of the dataset, such as details about the source sequences, number of test subjects, test methodology, encoding settings, etc. Such information is often of great importance to the users of the dataset as it can help them get a quick understanding of the motivation and scope of the dataset. Without such a template, it is left to each reader to collate the information from the relevant publication or website, which is a tedious and time-consuming process. In some cases, the absence of a template to guide the documentation process can result in an unintentional omission of some important information.
This paper addresses this simple but significant gap by proposing a datasheet template for documenting various aspects of subjective and objective quality assessment datasets for multimedia data. The contributions presented in this work aim to simplify the documentation process for existing and new datasets and improve their reproducibility. The proposed datasheet template is available on GitHub, along with a few sample datasheets of a few open-source audiovisual subjective and objective datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.