Mathematics > Combinatorics
[Submitted on 2 May 2023 (v1), last revised 15 Oct 2023 (this version, v2)]
Title:Complexity Framework for Forbidden Subgraphs IV: The Steiner Forest Problem
View PDFAbstract:We study Steiner Forest on $H$-subgraph-free graphs, that is, graphs that do not contain some fixed graph $H$ as a (not necessarily induced) subgraph. We are motivated by a recent framework that completely characterizes the complexity of many problems on $H$-subgraph-free graphs. However, in contrast to e.g. the related Steiner Tree problem, Steiner Forest falls outside this framework. Hence, the complexity of Steiner Forest on $H$-subgraph-free graphs remained tantalizingly open. In this paper, we make significant progress towards determining the complexity of Steiner Forest on $H$-subgraph-free graphs. Our main results are four novel polynomial-time algorithms for different excluded graphs $H$ that are central to further understand its complexity. Along the way, we study the complexity of Steiner Forest for graphs with a small $c$-deletion set, that is, a small set $S$ of vertices such that each component of $G-S$ has size at most $c$. Using this parameter, we give two noteworthy algorithms that we later employ as subroutines. First, we prove Steiner Forest is FPT parameterized by $|S|$ when $c=1$ (i.e. the vertex cover number). Second, we prove Steiner Forest is polynomial-time solvable for graphs with a 2-deletion set of size at most 2. The latter result is tight, as the problem is NP-complete for graphs with a 3-deletion set of size 2.
Submission history
From: Daniel Paulusma [view email][v1] Tue, 2 May 2023 17:16:21 UTC (277 KB)
[v2] Sun, 15 Oct 2023 19:53:25 UTC (260 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.