Statistics > Machine Learning
[Submitted on 30 Apr 2023]
Title:Time series clustering based on prediction accuracy of global forecasting models
View PDFAbstract:In this paper, a novel method to perform model-based clustering of time series is proposed. The procedure relies on two iterative steps: (i) K global forecasting models are fitted via pooling by considering the series pertaining to each cluster and (ii) each series is assigned to the group associated with the model producing the best forecasts according to a particular criterion. Unlike most techniques proposed in the literature, the method considers the predictive accuracy as the main element for constructing the clustering partition, which contains groups jointly minimizing the overall forecasting error. Thus, the approach leads to a new clustering paradigm where the quality of the clustering solution is measured in terms of its predictive capability. In addition, the procedure gives rise to an effective mechanism for selecting the number of clusters in a time series database and can be used in combination with any class of regression model. An extensive simulation study shows that our method outperforms several alternative techniques concerning both clustering effectiveness and predictive accuracy. The approach is also applied to perform clustering in several datasets used as standard benchmarks in the time series literature, obtaining great results.
Submission history
From: Ángel López-Oriona [view email][v1] Sun, 30 Apr 2023 13:12:19 UTC (2,610 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.