Electrical Engineering and Systems Science > Signal Processing
[Submitted on 26 Apr 2023]
Title:An EEG Channel Selection Framework for Driver Drowsiness Detection via Interpretability Guidance
View PDFAbstract:Drowsy driving has a crucial influence on driving safety, creating an urgent demand for driver drowsiness detection. Electroencephalogram (EEG) signal can accurately reflect the mental fatigue state and thus has been widely studied in drowsiness monitoring. However, the raw EEG data is inherently noisy and redundant, which is neglected by existing works that just use single-channel EEG data or full-head channel EEG data for model training, resulting in limited performance of driver drowsiness detection. In this paper, we are the first to propose an Interpretability-guided Channel Selection (ICS) framework for the driver drowsiness detection task. Specifically, we design a two-stage training strategy to progressively select the key contributing channels with the guidance of interpretability. We first train a teacher network in the first stage using full-head channel EEG data. Then we apply the class activation mapping (CAM) to the trained teacher model to highlight the high-contributing EEG channels and further propose a channel voting scheme to select the top N contributing EEG channels. Finally, we train a student network with the selected channels of EEG data in the second stage for driver drowsiness detection. Experiments are designed on a public dataset, and the results demonstrate that our method is highly applicable and can significantly improve the performance of cross-subject driver drowsiness detection.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.