Computer Science > Networking and Internet Architecture
[Submitted on 28 Apr 2023]
Title:A Federated Reinforcement Learning Framework for Link Activation in Multi-link Wi-Fi Networks
View PDFAbstract:Next-generation Wi-Fi networks are looking forward to introducing new features like multi-link operation (MLO) to both achieve higher throughput and lower latency. However, given the limited number of available channels, the use of multiple links by a group of contending Basic Service Sets (BSSs) can result in higher interference and channel contention, thus potentially leading to lower performance and reliability. In such a situation, it could be better for all contending BSSs to use less links if that contributes to reduce channel access contention. Recently, reinforcement learning (RL) has proven its potential for optimizing resource allocation in wireless networks. However, the independent operation of each wireless network makes difficult -- if not almost impossible -- for each individual network to learn a good configuration. To solve this issue, in this paper, we propose the use of a Federated Reinforcement Learning (FRL) framework, i.e., a collaborative machine learning approach to train models across multiple distributed agents without exchanging data, to collaboratively learn the the best MLO-Link Allocation (LA) strategy by a group of neighboring BSSs. The simulation results show that the FRL-based decentralized MLO-LA strategy achieves a better throughput fairness, and so a higher reliability -- because it allows the different BSSs to find a link allocation strategy which maximizes the minimum achieved data rate -- compared to fixed, random and RL-based MLO-LA schemes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.