Computer Science > Programming Languages
[Submitted on 24 Apr 2023]
Title:Context Sensitivity without Contexts: A Cut-Shortcut Approach to Fast and Precise Pointer Analysis
View PDFAbstract:Over the past decades, context sensitivity has been considered as one of the most effective ideas for improving the precision of pointer analysis for Java. However, despite great precision benefits, as each method is equivalently cloned and analyzed under each context, context sensitivity brings heavy efficiency costs. In this work, we present a fundamentally different approach called Cut-Shortcut for fast and precise pointer analysis for Java. Its insight is simple: the main effect of cloning methods under different contexts is to filter spurious object flows that have been merged inside a callee method; from the view of a typical pointer flow graph (PFG), such effect can be simulated by cutting off (Cut) the edges that introduce precision loss to certain pointers and adding Shortcut edges directly from source pointers to the target ones circumventing the method on PFG. As a result, we can achieve the effect of context sensitivity without contexts. We identify three general program patterns and develop algorithms based on them to safely cut off and add shortcut edges on PFG, formalize them and formally prove the soundness. To comprehensively validate Cut-Shortcut's effectiveness, we implement two versions of Cut-Shortcut for two state-of-the-art pointer analysis frameworks for Java, one in Datalog for the declarative Doop and the other in Java for the imperative Tai-e, and we consider all the large and complex programs used in recent literatures that meet the experimental requirements. The evaluation results are extremely promising: Cut-Shortcut is even able to run faster than context insensitivity for most evaluated programs while obtaining high precision that is comparable to context sensitivity (if scalable) in both frameworks. This is for the first time that we have been able to achieve such a good efficiency and precision trade-off for those hard-to-analyze programs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.