Computer Science > Machine Learning
[Submitted on 22 Apr 2023]
Title:N2G: A Scalable Approach for Quantifying Interpretable Neuron Representations in Large Language Models
View PDFAbstract:Understanding the function of individual neurons within language models is essential for mechanistic interpretability research. We propose $\textbf{Neuron to Graph (N2G)}$, a tool which takes a neuron and its dataset examples, and automatically distills the neuron's behaviour on those examples to an interpretable graph. This presents a less labour intensive approach to interpreting neurons than current manual methods, that will better scale these methods to Large Language Models (LLMs). We use truncation and saliency methods to only present the important tokens, and augment the dataset examples with more diverse samples to better capture the extent of neuron behaviour. These graphs can be visualised to aid manual interpretation by researchers, but can also output token activations on text to compare to the neuron's ground truth activations for automatic validation. N2G represents a step towards scalable interpretability methods by allowing us to convert neurons in an LLM to interpretable representations of measurable quality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.