Computer Science > Information Retrieval
[Submitted on 25 Apr 2023]
Title:COUPA: An Industrial Recommender System for Online to Offline Service Platforms
View PDFAbstract:Aiming at helping users locally discovery retail services (e.g., entertainment and dinning), Online to Offline (O2O) service platforms have become popular in recent years, which greatly challenge current recommender systems. With the real data in Alipay, a feeds-like scenario for O2O services, we find that recurrence based temporal patterns and position biases commonly exist in our scenarios, which seriously threaten the recommendation effectiveness. To this end, we propose COUPA, an industrial system targeting for characterizing user preference with following two considerations: (1) Time aware preference: we employ the continuous time aware point process equipped with an attention mechanism to fully capture temporal patterns for recommendation. (2) Position aware preference: a position selector component equipped with a position personalization module is elaborately designed to mitigate position bias in a personalized manner. Finally, we carefully implement and deploy COUPA on Alipay with a cooperation of edge, streaming and batch computing, as well as a two-stage online serving mode, to support several popular recommendation scenarios. We conduct extensive experiments to demonstrate that COUPA consistently achieves superior performance and has potential to provide intuitive evidences for recommendation
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.