Computer Science > Machine Learning
[Submitted on 21 Apr 2023 (v1), last revised 20 May 2024 (this version, v2)]
Title:Time Series Classification for Detecting Parkinson's Disease from Wrist Motions
View PDF HTML (experimental)Abstract:Parkinson's disease (PD) is a neurodegenerative condition characterized by frequently changing motor symptoms, necessitating continuous symptom monitoring for more targeted treatment. Classical time series classification and deep learning techniques have demonstrated limited efficacy in monitoring PD symptoms using wearable accelerometer data due to complex PD movement patterns and the small size of available datasets. We investigate InceptionTime and RandOm Convolutional KErnel Transform (ROCKET) as they are promising for PD symptom monitoring, with InceptionTime's high learning capacity being well-suited to modeling complex movement patterns while ROCKET is suited to small datasets. With random search methodology, we identify the highest-scoring InceptionTime architecture and compare its performance to ROCKET with a ridge classifier and a multi-layer perceptron (MLP) on wrist motion data from PD patients. Our findings indicate that all approaches are suitable for estimating tremor severity and bradykinesia presence but encounter challenges in detecting dyskinesia. ROCKET demonstrates superior performance in identifying dyskinesia, whereas InceptionTime exhibits slightly better performance in tremor and bradykinesia detection. Notably, both methods outperform the multi-layer perceptron. In conclusion, InceptionTime exhibits the capability to classify complex wrist motion time series and holds the greatest potential for continuous symptom monitoring in PD.
Submission history
From: Cedric DoniƩ [view email][v1] Fri, 21 Apr 2023 22:38:44 UTC (467 KB)
[v2] Mon, 20 May 2024 20:59:05 UTC (424 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.