Computer Science > Robotics
[Submitted on 24 Apr 2023 (v1), last revised 14 Jun 2023 (this version, v2)]
Title:Fault-tolerant Control of an Over-actuated UAV Platform Built on Quadcopters and Passive Hinges
View PDFAbstract:Propeller failure is a major cause of multirotor Unmanned Aerial Vehicles (UAVs) crashes. While conventional multirotor systems struggle to address this issue due to underactuation, over-actuated platforms can continue flying with appropriate fault-tolerant control (FTC). This paper presents a robust FTC controller for an over-actuated UAV platform composed of quadcopters mounted on passive joints, offering input redundancy at both the high-level vehicle control and the low-level quadcopter control of vectored thrusts. To maximize the benefits of input redundancy during propeller failure, the proposed FTC controller features a hierarchical control architecture with three key components: (i) a low-level adjustment strategy to prevent propeller-level thrust saturation; (ii) a compensation loop for mitigating introduced disturbances; (iii) a nullspace-based control allocation framework to avoid quadcopter-level thrust saturation. Through reallocating actuator inputs in both the low-level and high-level control loops, the low-level quadcopter control can be maintained with up to two failed propellers, ensuring that the whole platform remains stable and avoids crashing. The proposed controller's superior performance is thoroughly examined through simulations and real-world experiments.
Submission history
From: Yao Su [view email][v1] Mon, 24 Apr 2023 06:05:24 UTC (9,164 KB)
[v2] Wed, 14 Jun 2023 05:47:32 UTC (8,494 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.