Computer Science > Machine Learning
[Submitted on 20 Apr 2023]
Title:A Meta-heuristic Approach to Estimate and Explain Classifier Uncertainty
View PDFAbstract:Trust is a crucial factor affecting the adoption of machine learning (ML) models. Qualitative studies have revealed that end-users, particularly in the medical domain, need models that can express their uncertainty in decision-making allowing users to know when to ignore the model's recommendations. However, existing approaches for quantifying decision-making uncertainty are not model-agnostic, or they rely on complex statistical derivations that are not easily understood by laypersons or end-users, making them less useful for explaining the model's decision-making process. This work proposes a set of class-independent meta-heuristics that can characterize the complexity of an instance in terms of factors are mutually relevant to both human and ML decision-making. The measures are integrated into a meta-learning framework that estimates the risk of misclassification. The proposed framework outperformed predicted probabilities in identifying instances at risk of being misclassified. The proposed measures and framework hold promise for improving model development for more complex instances, as well as providing a new means of model abstention and explanation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.