Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Apr 2023]
Title:CrossFusion: Interleaving Cross-modal Complementation for Noise-resistant 3D Object Detection
View PDFAbstract:The combination of LiDAR and camera modalities is proven to be necessary and typical for 3D object detection according to recent studies. Existing fusion strategies tend to overly rely on the LiDAR modal in essence, which exploits the abundant semantics from the camera sensor insufficiently. However, existing methods cannot rely on information from other modalities because the corruption of LiDAR features results in a large domain gap. Following this, we propose CrossFusion, a more robust and noise-resistant scheme that makes full use of the camera and LiDAR features with the designed cross-modal complementation strategy. Extensive experiments we conducted show that our method not only outperforms the state-of-the-art methods under the setting without introducing an extra depth estimation network but also demonstrates our model's noise resistance without re-training for the specific malfunction scenarios by increasing 5.2\% mAP and 2.4\% NDS.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.