Computer Science > Databases
[Submitted on 18 Apr 2023 (v1), last revised 21 Apr 2023 (this version, v2)]
Title:Contact Tracing over Uncertain Indoor Positioning Data (Extended Version)
View PDFAbstract:Pandemics often cause dramatic losses of human lives and impact our societies in many aspects such as public health, tourism, and economy. To contain the spread of an epidemic like COVID-19, efficient and effective contact tracing is important, especially in indoor venues where the risk of infection is higher. In this work, we formulate and study a novel query called Indoor Contact Query (ICQ) over raw, uncertain indoor positioning data that digitalizes people's movements indoors. Given a query object o, e.g., a person confirmed to be a virus carrier, an ICQ analyzes uncertain indoor positioning data to find objects that most likely had close contact with o for a long period of time. To process ICQ, we propose a set of techniques. First, we design an enhanced indoor graph model to organize different types of data necessary for ICQ. Second, for indoor moving objects, we devise methods to determine uncertain regions and to derive positioning samples missing in the raw data. Third, we propose a query processing framework with a close contact determination method, a search algorithm, and the acceleration strategies. We conduct extensive experiments on synthetic and real datasets to evaluate our proposals. The results demonstrate the efficiency and effectiveness of our proposals.
Submission history
From: Tiantian Liu [view email][v1] Tue, 18 Apr 2023 09:05:53 UTC (2,033 KB)
[v2] Fri, 21 Apr 2023 17:06:47 UTC (3,294 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.