Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Apr 2023]
Title:RadarGNN: Transformation Invariant Graph Neural Network for Radar-based Perception
View PDFAbstract:A reliable perception has to be robust against challenging environmental conditions. Therefore, recent efforts focused on the use of radar sensors in addition to camera and lidar sensors for perception applications. However, the sparsity of radar point clouds and the poor data availability remain challenging for current perception methods. To address these challenges, a novel graph neural network is proposed that does not just use the information of the points themselves but also the relationships between the points. The model is designed to consider both point features and point-pair features, embedded in the edges of the graph. Furthermore, a general approach for achieving transformation invariance is proposed which is robust against unseen scenarios and also counteracts the limited data availability. The transformation invariance is achieved by an invariant data representation rather than an invariant model architecture, making it applicable to other methods. The proposed RadarGNN model outperforms all previous methods on the RadarScenes dataset. In addition, the effects of different invariances on the object detection and semantic segmentation quality are investigated. The code is made available as open-source software under this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.