Computer Science > Machine Learning
[Submitted on 5 Apr 2023]
Title:A system for exploring big data: an iterative k-means searchlight for outlier detection on open health data
View PDFAbstract:The interactive exploration of large and evolving datasets is challenging as relationships between underlying variables may not be fully understood. There may be hidden trends and patterns in the data that are worthy of further exploration and analysis. We present a system that methodically explores multiple combinations of variables using a searchlight technique and identifies outliers. An iterative k-means clustering algorithm is applied to features derived through a split-apply-combine paradigm used in the database literature. Outliers are identified as singleton or small clusters. This algorithm is swept across the dataset in a searchlight manner. The dimensions that contain outliers are combined in pairs with other dimensions using a susbset scan technique to gain further insight into the outliers. We illustrate this system by anaylzing open health care data released by New York State. We apply our iterative k-means searchlight followed by subset scanning. Several anomalous trends in the data are identified, including cost overruns at specific hospitals, and increases in diagnoses such as suicides. These constitute novel findings in the literature, and are of potential use to regulatory agencies, policy makers and concerned citizens.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.