Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Apr 2023]
Title:A Certified Radius-Guided Attack Framework to Image Segmentation Models
View PDFAbstract:Image segmentation is an important problem in many safety-critical applications. Recent studies show that modern image segmentation models are vulnerable to adversarial perturbations, while existing attack methods mainly follow the idea of attacking image classification models. We argue that image segmentation and classification have inherent differences, and design an attack framework specially for image segmentation models. Our attack framework is inspired by certified radius, which was originally used by defenders to defend against adversarial perturbations to classification models. We are the first, from the attacker perspective, to leverage the properties of certified radius and propose a certified radius guided attack framework against image segmentation models. Specifically, we first adapt randomized smoothing, the state-of-the-art certification method for classification models, to derive the pixel's certified radius. We then focus more on disrupting pixels with relatively smaller certified radii and design a pixel-wise certified radius guided loss, when plugged into any existing white-box attack, yields our certified radius-guided white-box attack. Next, we propose the first black-box attack to image segmentation models via bandit. We design a novel gradient estimator, based on bandit feedback, which is query-efficient and provably unbiased and stable. We use this gradient estimator to design a projected bandit gradient descent (PBGD) attack, as well as a certified radius-guided PBGD (CR-PBGD) attack. We prove our PBGD and CR-PBGD attacks can achieve asymptotically optimal attack performance with an optimal rate. We evaluate our certified-radius guided white-box and black-box attacks on multiple modern image segmentation models and datasets. Our results validate the effectiveness of our certified radius-guided attack framework.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.