Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 4 Apr 2023]
Title:Predicting the Performance-Cost Trade-off of Applications Across Multiple Systems
View PDFAbstract:In modern computing environments, users may have multiple systems accessible to them such as local clusters, private clouds, or public clouds. This abundance of choices makes it difficult for users to select the system and configuration for running an application that best meet their performance and cost objectives. To assist such users, we propose a prediction tool that predicts the full performance-cost trade-off space of an application across multiple systems. Our tool runs and profiles a submitted application on a small number of configurations from some of the systems, and uses that information to predict the application's performance on all configurations in all systems. The prediction models are trained offline with data collected from running a large number of applications on a wide variety of configurations. Notable aspects of our tool include: providing different scopes of prediction with varying online profiling requirements, automating the selection of the small number of configurations and systems used for online profiling, performing online profiling using partial runs thereby make predictions for applications without running them to completion, employing a classifier to distinguish applications that scale well from those that scale poorly, and predicting the sensitivity of applications to interference from other users. We evaluate our tool using 69 data analytics and scientific computing benchmarks executing on three different single-node CPU systems with 8-9 configurations each and show that it can achieve low prediction error with modest profiling overhead.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.