Computer Science > Robotics
[Submitted on 1 Apr 2023]
Title:Adaptive formation motion planning and control of autonomous underwater vehicles using deep reinforcement learning
View PDFAbstract:Creating safe paths in unknown and uncertain environments is a challenging aspect of leader-follower formation control. In this architecture, the leader moves toward the target by taking optimal actions, and followers should also avoid obstacles while maintaining their desired formation shape. Most of the studies in this field have inspected formation control and obstacle avoidance separately. The present study proposes a new approach based on deep reinforcement learning (DRL) for end-to-end motion planning and control of under-actuated autonomous underwater vehicles (AUVs). The aim is to design optimal adaptive distributed controllers based on actor-critic structure for AUVs formation motion planning. This is accomplished by controlling the speed and heading of AUVs. In obstacle avoidance, two approaches have been deployed. In the first approach, the goal is to design control policies for the leader and followers such that each learns its own collision-free path. Moreover, the followers adhere to an overall formation maintenance policy. In the second approach, the leader solely learns the control policy, and safely leads the whole group towards the target. Here, the control policy of the followers is to maintain the predetermined distance and angle. In the presence of ocean currents, communication delays, and sensing errors, the robustness of the proposed method under realistically perturbed circumstances is shown. The efficiency of the algorithms has been evaluated and approved using a number of computer-based simulations.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.