Computer Science > Machine Learning
[Submitted on 23 Mar 2023]
Title:Physics Symbolic Learner for Discovering Ground-Motion Models Via NGA-West2 Database
View PDFAbstract:Ground-motion model (GMM) is the basis of many earthquake engineering studies. In this study, a novel physics-informed symbolic learner (PISL) method based on the Nest Generation Attenuation-West2 database is proposed to automatically discover mathematical equation operators as symbols. The sequential threshold ridge regression algorithm is utilized to distill a concise and interpretable explicit characterization of complex systems of ground motions. In addition to the basic variables retrieved from previous GMMs, the current PISL incorporates two a priori physical conditions, namely, distance and amplitude saturation. GMMs developed using the PISL, an empirical regression method (ERM), and an artificial neural network (ANN) are compared in terms of residuals and extrapolation based on obtained data of peak ground acceleration and velocity. The results show that the inter- and intra-event standard deviations of the three methods are similar. The functional form of the PISL is more concise than that of the ERM and ANN. The extrapolation capability of the PISL is more accurate than that of the ANN. The PISL-GMM used in this study provide a new paradigm of regression that considers both physical and data-driven machine learning and can be used to identify the implied physical relationships and prediction equations of ground motion variables in different regions.
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.