Computer Science > Cryptography and Security
[Submitted on 22 Mar 2023 (v1), last revised 18 Apr 2024 (this version, v2)]
Title:A survey on hardware-based malware detection approaches
View PDF HTML (experimental)Abstract:This paper delves into the dynamic landscape of computer security, where malware poses a paramount threat. Our focus is a riveting exploration of the recent and promising hardware-based malware detection approaches. Leveraging hardware performance counters and machine learning prowess, hardware-based malware detection approaches bring forth compelling advantages such as real-time detection, resilience to code variations, minimal performance overhead, protection disablement fortitude, and cost-effectiveness. Navigating through a generic hardware-based detection framework, we meticulously analyze the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours. This survey is not only a resource for seasoned experts but also an inviting starting point for those venturing into the field of malware detection. However, challenges emerge in detecting malware based on hardware events. We struggle with the imperative of accuracy improvements and strategies to address the remaining classification errors. The discussion extends to crafting mixed hardware and software approaches for collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of the correlation between hardware events and malware applications.
Submission history
From: Cristiano Chenet [view email][v1] Wed, 22 Mar 2023 13:00:41 UTC (236 KB)
[v2] Thu, 18 Apr 2024 08:27:28 UTC (1,048 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.