Computer Science > Sound
[Submitted on 10 Mar 2023]
Title:MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems
View PDFAbstract:Automatic speech recognition (ASR) systems based on deep neural networks are weak against adversarial perturbations. We propose mixPGD adversarial training method to improve the robustness of the model for ASR systems. In standard adversarial training, adversarial samples are generated by leveraging supervised or unsupervised methods. We merge the capabilities of both supervised and unsupervised approaches in our method to generate new adversarial samples which aid in improving model robustness. Extensive experiments and comparison across various state-of-the-art defense methods and adversarial attacks have been performed to show that mixPGD gains 4.1% WER of better performance than previous best performing models under white-box adversarial attack setting. We tested our proposed defense method against both white-box and transfer based black-box attack settings to ensure that our defense strategy is robust against various types of attacks. Empirical results on several adversarial attacks validate the effectiveness of our proposed approach.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.