Computer Science > Computation and Language
[Submitted on 8 Mar 2023 (v1), last revised 10 Apr 2023 (this version, v2)]
Title:Does Synthetic Data Generation of LLMs Help Clinical Text Mining?
View PDFAbstract:Recent advancements in large language models (LLMs) have led to the development of highly potent models like OpenAI's ChatGPT. These models have exhibited exceptional performance in a variety of tasks, such as question answering, essay composition, and code generation. However, their effectiveness in the healthcare sector remains uncertain. In this study, we seek to investigate the potential of ChatGPT to aid in clinical text mining by examining its ability to extract structured information from unstructured healthcare texts, with a focus on biological named entity recognition and relation extraction. However, our preliminary results indicate that employing ChatGPT directly for these tasks resulted in poor performance and raised privacy concerns associated with uploading patients' information to the ChatGPT API. To overcome these limitations, we propose a new training paradigm that involves generating a vast quantity of high-quality synthetic data with labels utilizing ChatGPT and fine-tuning a local model for the downstream task. Our method has resulted in significant improvements in the performance of downstream tasks, improving the F1-score from 23.37% to 63.99% for the named entity recognition task and from 75.86% to 83.59% for the relation extraction task. Furthermore, generating data using ChatGPT can significantly reduce the time and effort required for data collection and labeling, as well as mitigate data privacy concerns. In summary, the proposed framework presents a promising solution to enhance the applicability of LLM models to clinical text mining.
Submission history
From: Ruixiang Tang [view email][v1] Wed, 8 Mar 2023 03:56:31 UTC (6,205 KB)
[v2] Mon, 10 Apr 2023 18:47:51 UTC (6,200 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.