Computer Science > Mathematical Software
[Submitted on 5 Mar 2023 (v1), last revised 8 Mar 2023 (this version, v2)]
Title:Acceleration of a production Solar MHD code with Fortran standard parallelism: From OpenACC to `do concurrent'
View PDFAbstract:There is growing interest in using standard language constructs for accelerated computing, avoiding the need for (often vendor-specific) external APIs. These constructs hold the potential to be more portable and much more `future-proof'. For Fortran codes, the current focus is on the {\tt do concurrent} (DC) loop. While there have been some successful examples of GPU-acceleration using DC for benchmark and/or small codes, its widespread adoption will require demonstrations of its use in full-size applications. Here, we look at the current capabilities and performance of using DC in a production application called Magnetohydrodynamic Algorithm outside a Sphere (MAS). MAS is a state-of-the-art model for studying coronal and heliospheric dynamics, is over 70,000 lines long, and has previously been ported to GPUs using MPI+OpenACC. We attempt to eliminate as many of its OpenACC directives as possible in favor of DC. We show that using the NVIDIA {\tt nvfortran} compiler's Fortran 202X preview implementation, unified managed memory, and modified MPI launch methods, we can achieve GPU acceleration across multiple GPUs without using a single OpenACC directive. However, doing so results in a slowdown between 1.25x and 3x. We discuss what future improvements are needed to avoid this loss, and show how we can still retain close
Submission history
From: Ronald Caplan [view email][v1] Sun, 5 Mar 2023 21:37:34 UTC (519 KB)
[v2] Wed, 8 Mar 2023 20:18:20 UTC (519 KB)
Current browse context:
cs.MS
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.