Computer Science > Computational Engineering, Finance, and Science
[Submitted on 7 Mar 2023 (v1), last revised 25 Nov 2023 (this version, v3)]
Title:Efficient Computation of Redundancy Matrices for Moderately Redundant Truss and Frame Structures
View PDFAbstract:Large statically indeterminate truss and frame structures exhibit complex load-bearing behavior, and redundancy matrices are helpful for their analysis and design. Depending on the task, the full redundancy matrix or only its diagonal entries are required. The standard computation procedure has a high computational effort. Many structures fall in the category of moderately redundant, i.e., the ratio of the statical indeterminacy to the number of all load-carrying modes of all elements is less one half. This paper proposes a closed-form expression for redundancy contributions that is computationally efficient for moderately redundant systems. The expression is derived via a factorization of the redundancy matrix that is based on singular value decomposition. Several examples illustrate the behavior of the method for increasing size of systems and, where applicable, for increasing degree of statical indeterminacy.
Submission history
From: Anton Tkachuk [view email][v1] Tue, 7 Mar 2023 14:55:24 UTC (335 KB)
[v2] Wed, 14 Jun 2023 08:35:45 UTC (515 KB)
[v3] Sat, 25 Nov 2023 14:11:34 UTC (364 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.