Computer Science > Social and Information Networks
[Submitted on 4 Mar 2023]
Title:Social Media COVID-19 Contact Tracing Using Mobile Social Payments and Facebook Data
View PDFAbstract:Many in the US were reluctant to report their COVID-19 cases at the height of the pandemic (e.g., for fear of missing work or other obligations due to quarantine mandates). Other methods such as using public social media data can therefore help augment current approaches to surveilling pandemics. This study evaluated the effectiveness of using social media data as a data source for tracking public health pandemics. There have been several attempts at using social media data from platforms like Twitter for analyzing the COVID-19 pandemic. While these provide a multitude of useful insights, new platforms like Venmo, a popular U.S. mobile social payment app often used during in-person activities, remain understudied. We developed unique computational methods (combining Venmo- and Facebook- derived data) to classify post content, including the location where the content was likely posted. This approach enabled geotemporal COVID-19-related infoveillance. By examining 135M publicly available Venmo transactions from 22.1M unique users, we found significant spikes in the use of COVID-19 related keywords in March 2020. Using Facebook-based geotags for 9K users along with transaction geo-parsing (i.e., parsing text to detect place names), we identified 38K location-based clusters. Within these groups, we found a strong correlation (0.81) between the use of COVID-19 keywords in a region and the number of reported COVID-19 cases as well as an aggregate decrease in transactions during lockdowns and an increase when lockdowns are lifted. Surprisingly, we saw a weak negative correlation between the number of transactions and reported cases over time (-0.49). Our results indicate that using non-Twitter social media trace data can aid pandemic- and other health-related infoveillance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.