Computer Science > Information Retrieval
[Submitted on 2 Mar 2023]
Title:Distillation from Heterogeneous Models for Top-K Recommendation
View PDFAbstract:Recent recommender systems have shown remarkable performance by using an ensemble of heterogeneous models. However, it is exceedingly costly because it requires resources and inference latency proportional to the number of models, which remains the bottleneck for production. Our work aims to transfer the ensemble knowledge of heterogeneous teachers to a lightweight student model using knowledge distillation (KD), to reduce the huge inference costs while retaining high accuracy. Through an empirical study, we find that the efficacy of distillation severely drops when transferring knowledge from heterogeneous teachers. Nevertheless, we show that an important signal to ease the difficulty can be obtained from the teacher's training trajectory. This paper proposes a new KD framework, named HetComp, that guides the student model by transferring easy-to-hard sequences of knowledge generated from the teachers' trajectories. To provide guidance according to the student's learning state, HetComp uses dynamic knowledge construction to provide progressively difficult ranking knowledge and adaptive knowledge transfer to gradually transfer finer-grained ranking information. Our comprehensive experiments show that HetComp significantly improves the distillation quality and the generalization of the student model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.