Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Mar 2023]
Title:FeatAug-DETR: Enriching One-to-Many Matching for DETRs with Feature Augmentation
View PDFAbstract:One-to-one matching is a crucial design in DETR-like object detection frameworks. It enables the DETR to perform end-to-end detection. However, it also faces challenges of lacking positive sample supervision and slow convergence speed. Several recent works proposed the one-to-many matching mechanism to accelerate training and boost detection performance. We revisit these methods and model them in a unified format of augmenting the object queries. In this paper, we propose two methods that realize one-to-many matching from a different perspective of augmenting images or image features. The first method is One-to-many Matching via Data Augmentation (denoted as DataAug-DETR). It spatially transforms the images and includes multiple augmented versions of each image in the same training batch. Such a simple augmentation strategy already achieves one-to-many matching and surprisingly improves DETR's performance. The second method is One-to-many matching via Feature Augmentation (denoted as FeatAug-DETR). Unlike DataAug-DETR, it augments the image features instead of the original images and includes multiple augmented features in the same batch to realize one-to-many matching. FeatAug-DETR significantly accelerates DETR training and boosts detection performance while keeping the inference speed unchanged. We conduct extensive experiments to evaluate the effectiveness of the proposed approach on DETR variants, including DAB-DETR, Deformable-DETR, and H-Deformable-DETR. Without extra training data, FeatAug-DETR shortens the training convergence periods of Deformable-DETR to 24 epochs and achieves 58.3 AP on COCO val2017 set with Swin-L as the backbone.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.