Physics > Chemical Physics
[Submitted on 28 Feb 2023 (v1), last revised 30 Dec 2023 (this version, v3)]
Title:Completeness of Atomic Structure Representations
View PDF HTML (experimental)Abstract:In this paper, we address the challenge of obtaining a comprehensive and symmetric representation of point particle groups, such as atoms in a molecule, which is crucial in physics and theoretical chemistry. The problem has become even more important with the widespread adoption of machine-learning techniques in science, as it underpins the capacity of models to accurately reproduce physical relationships while being consistent with fundamental symmetries and conservation laws. However, some of the descriptors that are commonly used to represent point clouds -- most notably those based on discretized correlations of the neighbor density, that underpin most of the existing ML models of matter at the atomic scale -- are unable to distinguish between special arrangements of particles in three dimensions. This makes it impossible to machine learn their properties. Atom-density correlations are provably complete in the limit in which they simultaneously describe the mutual relationship between all atoms, which is impractical. We present a novel approach to construct descriptors of \emph{finite} correlations based on the relative arrangement of particle triplets, which can be employed to create symmetry-adapted models with universal approximation capabilities, which have the resolution of the neighbor discretization as the sole convergence parameter. Our strategy is demonstrated on a class of atomic arrangements that are specifically built to defy a broad class of conventional symmetric descriptors, showcasing its potential for addressing their limitations.
Submission history
From: Jigyasa Nigam [view email][v1] Tue, 28 Feb 2023 17:11:42 UTC (83 KB)
[v2] Fri, 11 Aug 2023 03:20:07 UTC (457 KB)
[v3] Sat, 30 Dec 2023 21:50:18 UTC (460 KB)
Current browse context:
physics.chem-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.