Computer Science > Robotics
[Submitted on 28 Feb 2023 (v1), last revised 13 Sep 2023 (this version, v2)]
Title:IMU-based Online Multi-lidar Calibration
View PDFAbstract:Modern autonomous systems typically use several sensors for perception. For best performance, accurate and reliable extrinsic calibration is necessary. In this research, we propose a reliable technique for the extrinsic calibration of several lidars on a vehicle without the need for odometry estimation or fiducial markers. First, our method generates an initial guess of the extrinsics by matching the raw signals of IMUs co-located with each lidar. This initial guess is then used in ICP and point cloud feature matching which refines and verifies this estimate. Furthermore, we can use observability criteria to choose a subset of the IMU measurements that have the highest mutual information -- rather than comparing all the readings. We have successfully validated our methodology using data gathered from Scania test vehicles.
Submission history
From: Sandipan Das [view email][v1] Tue, 28 Feb 2023 16:39:27 UTC (14,389 KB)
[v2] Wed, 13 Sep 2023 10:24:22 UTC (17,149 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.