Computer Science > Artificial Intelligence
[Submitted on 14 Feb 2023]
Title:PrefixMol: Target- and Chemistry-aware Molecule Design via Prefix Embedding
View PDFAbstract:Is there a unified model for generating molecules considering different conditions, such as binding pockets and chemical properties? Although target-aware generative models have made significant advances in drug design, they do not consider chemistry conditions and cannot guarantee the desired chemical properties. Unfortunately, merging the target-aware and chemical-aware models into a unified model to meet customized requirements may lead to the problem of negative transfer. Inspired by the success of multi-task learning in the NLP area, we use prefix embeddings to provide a novel generative model that considers both the targeted pocket's circumstances and a variety of chemical properties. All conditional information is represented as learnable features, which the generative model subsequently employs as a contextual prompt. Experiments show that our model exhibits good controllability in both single and multi-conditional molecular generation. The controllability enables us to outperform previous structure-based drug design methods. More interestingly, we open up the attention mechanism and reveal coupling relationships between conditions, providing guidance for multi-conditional molecule generation.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.