Computer Science > Artificial Intelligence
[Submitted on 8 Feb 2023]
Title:AISYN: AI-driven Reinforcement Learning-Based Logic Synthesis Framework
View PDFAbstract:Logic synthesis is one of the most important steps in design and implementation of digital chips with a big impact on final Quality of Results (QoR). For a most general input circuit modeled by a Directed Acyclic Graph (DAG), many logic synthesis problems such as delay or area minimization are NP-Complete, hence, no optimal solution is available. This is why many classical logic optimization functions tend to follow greedy approaches that are easily trapped in local minima that does not allow improving QoR as much as needed. We believe that Artificial Intelligence (AI) and more specifically Reinforcement Learning (RL) algorithms can help in solving this problem. This is because AI and RL can help minimizing QoR further by exiting from local minima. Our experiments on both open source and industrial benchmark circuits show that significant improvements on important metrics such as area, delay, and power can be achieved by making logic synthesis optimization functions AI-driven. For example, our RL-based rewriting algorithm could improve total cell area post-synthesis by up to 69.3% when compared to a classical rewriting algorithm with no AI awareness.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.