Computer Science > Information Retrieval
[Submitted on 9 Feb 2023 (v1), last revised 18 Mar 2023 (this version, v2)]
Title:Lorentz Equivariant Model for Knowledge-Enhanced Hyperbolic Collaborative Filtering
View PDFAbstract:Introducing prior auxiliary information from the knowledge graph (KG) to assist the user-item graph can improve the comprehensive performance of the recommender system. Many recent studies show that the ensemble properties of hyperbolic spaces fit the scale-free and hierarchical characteristics exhibited in the above two types of graphs well. However, existing hyperbolic methods ignore the consideration of equivariance, thus they cannot generalize symmetric features under given transformations, which seriously limits the capability of the model. Moreover, they cannot balance preserving the heterogeneity and mining the high-order entity information to users across two graphs. To fill these gaps, we propose a rigorously Lorentz group equivariant knowledge-enhanced collaborative filtering model (LECF). Innovatively, we jointly update the attribute embeddings (containing the high-order entity signals from the KG) and hyperbolic embeddings (the distance between hyperbolic embeddings reveals the recommendation tendency) by the LECF layer with Lorentz Equivariant Transformation. Moreover, we propose Hyperbolic Sparse Attention Mechanism to sample the most informative neighbor nodes. Lorentz equivariance is strictly maintained throughout the entire model, and enforcing equivariance is proven necessary experimentally. Extensive experiments on three real-world benchmarks demonstrate that LECF remarkably outperforms state-of-the-art methods.
Submission history
From: Bosong Huang [view email][v1] Thu, 9 Feb 2023 10:20:23 UTC (1,965 KB)
[v2] Sat, 18 Mar 2023 02:10:10 UTC (1,020 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.