Computer Science > Social and Information Networks
[Submitted on 7 Feb 2023 (v1), last revised 29 Sep 2023 (this version, v2)]
Title:Understanding the Loss in Community Resilience due to Hurricanes using Facebook Data
View PDFAbstract:Significant negative impacts are observed in productivity, economy, and social wellbeing because of the reduced human activity due to extreme events. Community resilience is an important and widely used concept to understand the impacts of an extreme event to population activity. Resilience is generally defined as the ability of a system to manage shocks and return to a steady state in response to an extreme event. In this study, aggregate location data from Facebook in response to Hurricane Ida are analyzed. Using changes in the number of Facebook users before, during, and after the disaster, community resilience is quantified as a function of the magnitude of impact and the time to recover from the extreme situation. Based on the resilience function, the transient loss of resilience in population activity is measured for the affected communities in Louisiana. The loss in resilience of the affected communities are explained by three types of factors, including disruption in physical infrastructures, disaster conditions due to hurricanes, and socio-economic characteristics. A greater loss in community resilience is associated with factors such as disruptions in power and transportation services and disaster conditions. Socioeconomic disparities in loss of resilience are found with respect to median income of a community. Understanding community resilience using decreased population activity levels due to a disaster and the factors associated with losses in resilience will enable us improve hazard preparedness, enhance disaster management practices, and create better recovery policies towards strengthening infrastructure and community resilience.
Submission history
From: Tasnuba Binte Jamal [view email][v1] Tue, 7 Feb 2023 15:22:57 UTC (1,517 KB)
[v2] Fri, 29 Sep 2023 14:14:43 UTC (1,542 KB)
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.