Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Feb 2023]
Title:Diffusion Model for Generative Image Denoising
View PDFAbstract:In supervised learning for image denoising, usually the paired clean images and noisy images are collected or synthesised to train a denoising model. L2 norm loss or other distance functions are used as the objective function for training. It often leads to an over-smooth result with less image details. In this paper, we regard the denoising task as a problem of estimating the posterior distribution of clean images conditioned on noisy images. We apply the idea of diffusion model to realize generative image denoising. According to the noise model in denoising tasks, we redefine the diffusion process such that it is different from the original one. Hence, the sampling of the posterior distribution is a reverse process of dozens of steps from the noisy image. We consider three types of noise model, Gaussian, Gamma and Poisson noise. With the guarantee of theory, we derive a unified strategy for model training. Our method is verified through experiments on three types of noise models and achieves excellent performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.