Computer Science > Multiagent Systems
[Submitted on 1 Feb 2023 (v1), last revised 2 Feb 2023 (this version, v2)]
Title:Task Placement and Resource Allocation for Edge Machine Learning: A GNN-based Multi-Agent Reinforcement Learning Paradigm
View PDFAbstract:Machine learning (ML) tasks are one of the major workloads in today's edge computing networks. Existing edge-cloud schedulers allocate the requested amounts of resources to each task, falling short of best utilizing the limited edge resources for ML tasks. This paper proposes TapFinger, a distributed scheduler for edge clusters that minimizes the total completion time of ML tasks through co-optimizing task placement and fine-grained multi-resource allocation. To learn the tasks' uncertain resource sensitivity and enable distributed scheduling, we adopt multi-agent reinforcement learning (MARL) and propose several techniques to make it efficient, including a heterogeneous graph attention network as the MARL backbone, a tailored task selection phase in the actor network, and the integration of Bayes' theorem and masking schemes. We first implement a single-task scheduling version, which schedules at most one task each time. Then we generalize to the multi-task scheduling case, in which a sequence of tasks is scheduled simultaneously. Our design can mitigate the expanded decision space and yield fast convergence to optimal scheduling solutions. Extensive experiments using synthetic and test-bed ML task traces show that TapFinger can achieve up to 54.9% reduction in the average task completion time and improve resource efficiency as compared to state-of-the-art schedulers.
Submission history
From: Yihong Li [view email][v1] Wed, 1 Feb 2023 16:45:26 UTC (1,864 KB)
[v2] Thu, 2 Feb 2023 03:25:59 UTC (1,864 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.