Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 23 Jan 2023]
Title:DAG-based Task Orchestration for Edge Computing
View PDFAbstract:As we increase the number of personal computing devices that we carry (mobile devices, tablets, e-readers, and laptops) and these come equipped with increasing resources, there is a vast potential computation power that can be utilized from those devices. Edge computing promises to exploit these underlying computation resources closer to users to help run latency-sensitive applications such as augmented reality and video analytics. However, one key missing piece has been how to incorporate personally owned unmanaged devices into a usable edge computing system. The primary challenges arise due to the heterogeneity, lack of interference management, and unpredictable availability of such devices. In this paper we propose an orchestration framework IBDASH, which orchestrates application tasks on an edge system that comprises a mix of commercial and personal edge devices. IBDASH targets reducing both end-to-end latency of execution and probability of failure for applications that have dependency among tasks, captured by directed acyclic graphs (DAGs). IBDASH takes memory constraints of each edge device and network bandwidth into consideration. To assess the effectiveness of IBDASH, we run real application tasks on real edge devices with widely varying this http URL feed these measurements into a simulator that runs IBDASH at scale. Compared to three state-of-the-art edge orchestration schemes, LAVEA, Petrel, and LaTS, and two intuitive baselines, IBDASH reduces the end-to-end latency and probability of failure, by 14% and 41% on average respectively. The main takeaway from our work is that it is feasible to combine personal and commercial devices into a usable edge computing platform, one that delivers low latency and predictable and high availability.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.