Mathematics > Numerical Analysis
[Submitted on 17 Jan 2023]
Title:Stability and guaranteed error control of approximations to the Monge--Ampère equation
View PDFAbstract:This paper analyzes a regularization scheme of the Monge--Ampère equation by uniformly elliptic Hamilton--Jacobi--Bellman equations. The main tools are stability estimates in the $L^\infty$ norm from the theory of viscosity solutions which are independent of the regularization parameter $\varepsilon$. They allow for the uniform convergence of the solution $u_\varepsilon$ to the regularized problem towards the Alexandrov solution $u$ to the Monge--Ampère equation for any nonnegative $L^n$ right-hand side and continuous Dirichlet data. The main application are guaranteed a posteriori error bounds in the $L^\infty$ norm for continuously differentiable finite element approximations of $u$ or $u_\varepsilon$.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.