Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Jan 2023 (v1), last revised 30 Jan 2023 (this version, v3)]
Title:(Safe) SMART Hands: Hand Activity Analysis and Distraction Alerts Using a Multi-Camera Framework
View PDFAbstract:Manual (hand-related) activity is a significant source of crash risk while driving. Accordingly, analysis of hand position and hand activity occupation is a useful component to understanding a driver's readiness to take control of a vehicle. Visual sensing through cameras provides a passive means of observing the hands, but its effectiveness varies depending on camera location. We introduce an algorithmic framework, SMART Hands, for accurate hand classification with an ensemble of camera views using machine learning. We illustrate the effectiveness of this framework in a 4-camera setup, reaching 98% classification accuracy on a variety of locations and held objects for both of the driver's hands. We conclude that this multi-camera framework can be extended to additional tasks such as gaze and pose analysis, with further applications in driver and passenger safety.
Submission history
From: Ross Greer [view email][v1] Sat, 14 Jan 2023 07:22:12 UTC (7,272 KB)
[v2] Wed, 18 Jan 2023 19:46:47 UTC (7,276 KB)
[v3] Mon, 30 Jan 2023 02:02:03 UTC (7,273 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.