Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Jan 2023 (v1), last revised 22 Jun 2023 (this version, v2)]
Title:InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning
View PDFAbstract:Inferring traffic object such as lane information is of foremost importance for deployment of autonomous driving. Previous approaches focus on offline construction of HD map inferred with GPS localization, which is insufficient for globally scalable autonomous driving. To alleviate these issues, we propose online HD map learning framework that detects HD map elements from onboard sensor observations. We represent the map elements as a graph; we propose InstaGraM, instance-level graph modeling of HD map that brings accurate and fast end-to-end vectorized HD map learning. Along with the graph modeling strategy, we propose end-to-end neural network composed of three stages: a unified BEV feature extraction, map graph component detection, and association via graph neural networks. Comprehensive experiments on public open dataset show that our proposed network outperforms previous models by up to 13.7 mAP with up to 33.8X faster computation time.
Submission history
From: Juyeb Shin [view email][v1] Tue, 10 Jan 2023 08:15:35 UTC (1,948 KB)
[v2] Thu, 22 Jun 2023 10:12:01 UTC (3,075 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.