Computer Science > Networking and Internet Architecture
[Submitted on 9 Jan 2023 (v1), last revised 7 Mar 2024 (this version, v4)]
Title:Near-optimal stochastic MIMO signal detection with a mixture of t-distribution prior
View PDF HTML (experimental)Abstract:Multiple-input multiple-output (MIMO) systems will play a crucial role in future wireless communication, but improving their signal detection performance to increase transmission efficiency remains a challenge. To address this issue, we propose extending the discrete signal detection problem in MIMO systems to a continuous one and applying the Hamiltonian Monte Carlo method, an efficient Markov chain Monte Carlo algorithm. In our previous studies, we have used a mixture of normal distributions for the prior distribution. In this study, we propose using a mixture of t-distributions, which further improves detection performance. Based on our theoretical analysis and computer simulations, the proposed method can achieve near-optimal signal detection with polynomial computational complexity. This high-performance and practical MIMO signal detection could contribute to the development of the 6th-generation mobile network.
Submission history
From: Junichiro Hagiwara [view email][v1] Mon, 9 Jan 2023 08:08:59 UTC (729 KB)
[v2] Sun, 12 Mar 2023 03:18:38 UTC (230 KB)
[v3] Mon, 28 Aug 2023 00:10:29 UTC (1,506 KB)
[v4] Thu, 7 Mar 2024 11:22:15 UTC (1,506 KB)
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.