Computer Science > Neural and Evolutionary Computing
[Submitted on 7 Jan 2023]
Title:A Lite Fireworks Algorithm for Optimization
View PDFAbstract:The fireworks algorithm is an optimization algorithm for simulating the explosion phenomenon of fireworks. Because of its fast convergence and high precision, it is widely used in pattern recognition, optimal scheduling, and other fields. However, most of the existing research work on the fireworks algorithm is improved based on its defects, and little consideration is given to reducing the number of parameters of the fireworks algorithm. The original fireworks algorithm has too many parameters, which increases the cost of algorithm adjustment and is not conducive to engineering applications. In addition, in the fireworks population, the unselected individuals are discarded, thus causing a waste of their location information. To reduce the number of parameters of the original Fireworks Algorithm and make full use of the location information of discarded individuals, we propose a simplified version of the Fireworks Algorithm. It reduces the number of algorithm parameters by redesigning the explosion operator of the fireworks algorithm and constructs an adaptive explosion radius by using the historical optimal information to balance the local mining and global exploration capabilities. The comparative experimental results of function optimization show that the overall performance of our proposed LFWA is better than that of comparative algorithms, such as the fireworks algorithm, particle swarm algorithm, and bat algorithm.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.