Computer Science > Information Retrieval
[Submitted on 13 Dec 2022]
Title:Recommender Systems in E-commerce
View PDFAbstract:E-commerce recommender systems are becoming increasingly important in the current digital world. They are used to personalize user experience, help customers find what they need quickly and efficiently, and increase revenue for the business. However, there are several challenges associated with big data-based e-commerce recommender systems. These challenges include limited resources, data validity period, cold start, long tail problem, scalability. In this paper, we discuss the challenges and potential solutions to overcome these challenges. We also discuss the different types of e-commerce recommender systems, their advantages, and disadvantages. We conclude with some future research directions to improve the performance of e-commerce recommender systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.