Mathematics > Optimization and Control
[Submitted on 23 Dec 2022]
Title:On a fixed-point continuation method for a convex optimization problem
View PDFAbstract:We consider a variation of the classical proximal-gradient algorithm for the iterative minimization of a cost function consisting of a sum of two terms, one smooth and the other prox-simple, and whose relative weight is determined by a penalty parameter. This so-called fixed-point continuation method allows one to approximate the problem's trade-off curve, i.e. to compute the minimizers of the cost function for a whole range of values of the penalty parameter at once. The algorithm is shown to converge, and a rate of convergence of the cost function is also derived. Furthermore, it is shown that this method is related to iterative algorithms constructed on the basis of the $\epsilon$-subdifferential of the prox-simple term. Some numerical examples are provided.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.