Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Dec 2022]
Title:Lightweight Monocular Depth Estimation
View PDFAbstract:Monocular depth estimation can play an important role in addressing the issue of deriving scene geometry from 2D images. It has been used in a variety of industries, including robots, self-driving cars, scene comprehension, 3D reconstructions, and others. The goal of our method is to create a lightweight machine-learning model in order to predict the depth value of each pixel given only a single RGB image as input with the Unet structure of the image segmentation network. We use the NYU Depth V2 dataset to test the structure and compare the result with other methods. The proposed method achieves relatively high accuracy and low rootmean-square error.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.