Computer Science > Computation and Language
[Submitted on 15 Dec 2022 (v1), last revised 4 Jun 2023 (this version, v2)]
Title:On Second Thought, Let's Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning
View PDFAbstract:Generating a Chain of Thought (CoT) has been shown to consistently improve large language model (LLM) performance on a wide range of NLP tasks. However, prior work has mainly focused on logical reasoning tasks (e.g. arithmetic, commonsense QA); it remains unclear whether improvements hold for more diverse types of reasoning, especially in socially situated contexts. Concretely, we perform a controlled evaluation of zero-shot CoT across two socially sensitive domains: harmful questions and stereotype benchmarks. We find that zero-shot CoT reasoning in sensitive domains significantly increases a model's likelihood to produce harmful or undesirable output, with trends holding across different prompt formats and model variants. Furthermore, we show that harmful CoTs increase with model size, but decrease with improved instruction following. Our work suggests that zero-shot CoT should be used with caution on socially important tasks, especially when marginalized groups or sensitive topics are involved.
Submission history
From: Omar Shaikh [view email][v1] Thu, 15 Dec 2022 18:59:32 UTC (8,408 KB)
[v2] Sun, 4 Jun 2023 21:09:55 UTC (7,833 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.