Computer Science > Computation and Language
[Submitted on 14 Nov 2022]
Title:Hope Speech Detection on Social Media Platforms
View PDFAbstract:Since personal computers became widely available in the consumer market, the amount of harmful content on the internet has significantly expanded. In simple terms, harmful content is anything online which causes a person distress or harm. It may include hate speech, violent content, threats, non-hope speech, etc. The online content must be positive, uplifting and supportive. Over the past few years, many studies have focused on solving this problem through hate speech detection, but very few focused on identifying hope speech. This paper discusses various machine learning approaches to identify a sentence as Hope Speech, Non-Hope Speech, or a Neutral sentence. The dataset used in the study contains English YouTube comments and is released as a part of the shared task "EACL-2021: Hope Speech Detection for Equality, Diversity, and Inclusion". Initially, the dataset obtained from the shared task had three classes: Hope Speech, non-Hope speech, and not in English; however, upon deeper inspection, we discovered that dataset relabeling is required. A group of undergraduates was hired to help perform the entire dataset's relabeling task. We experimented with conventional machine learning models (such as Naïve Bayes, logistic regression and support vector machine) and pre-trained models (such as BERT) on relabeled data. According to the experimental results, the relabeled data has achieved a better accuracy for Hope speech identification than the original data set.
Submission history
From: Shankar Biradar Mr [view email][v1] Mon, 14 Nov 2022 10:58:22 UTC (598 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.