Computer Science > Information Retrieval
[Submitted on 13 Dec 2022 (v1), last revised 28 Feb 2024 (this version, v2)]
Title:Automatic ESG Assessment of Companies by Mining and Evaluating Media Coverage Data: NLP Approach and Tool
View PDFAbstract:Context: Sustainable corporate behavior is increasingly valued by society and impacts corporate reputation and customer trust. Hence, companies regularly publish sustainability reports to shed light on their impact on environmental, social, and governance (ESG) factors. Problem: Sustainability reports are written by companies themselves and are therefore considered a company-controlled source. Contrary, studies reveal that non-corporate channels (e.g., media coverage) represent the main driver for ESG transparency. However, analysing media coverage regarding ESG factors is challenging since (1) the amount of published news articles grows daily, (2) media coverage data does not necessarily deal with an ESG-relevant topic, meaning that it must be carefully filtered, and (3) the majority of media coverage data is unstructured. Research Goal: We aim to extract ESG-relevant information from textual media reactions automatically to calculate an ESG score for a given company. Our goal is to reduce the cost of ESG data collection and make ESG information available to the general public. Contribution: Our contributions are three-fold: First, we publish a corpus of 432,411 news headlines annotated as being environmental-, governance-, social-related, or ESG-irrelevant. Second, we present our tool-supported approach called ESG-Miner capable of analyzing and evaluating headlines on corporate ESG-performance automatically. Third, we demonstrate the feasibility of our approach in an experiment and apply the ESG-Miner on 3000 manually labeled headlines. Our approach processes 96.7 % of the headlines correctly and shows a great performance in detecting environmental-related headlines along with their correct sentiment. We encourage fellow researchers and practitioners to use the ESG-Miner at this https URL.
Submission history
From: Jannik Fischbach [view email][v1] Tue, 13 Dec 2022 12:51:14 UTC (410 KB)
[v2] Wed, 28 Feb 2024 13:39:22 UTC (742 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.