Computer Science > Machine Learning
[Submitted on 3 Dec 2022 (v1), last revised 7 Mar 2023 (this version, v2)]
Title:Learning-Assisted Algorithm Unrolling for Online Optimization with Budget Constraints
View PDFAbstract:Online optimization with multiple budget constraints is challenging since the online decisions over a short time horizon are coupled together by strict inventory constraints. The existing manually-designed algorithms cannot achieve satisfactory average performance for this setting because they often need a large number of time steps for convergence and/or may violate the inventory constraints. In this paper, we propose a new machine learning (ML) assisted unrolling approach, called LAAU (Learning-Assisted Algorithm Unrolling), which unrolls the online decision pipeline and leverages an ML model for updating the Lagrangian multiplier online. For efficient training via backpropagation, we derive gradients of the decision pipeline over time. We also provide the average cost bounds for two cases when training data is available offline and collected online, respectively. Finally, we present numerical results to highlight that LAAU can outperform the existing baselines.
Submission history
From: Jianyi Yang [view email][v1] Sat, 3 Dec 2022 20:56:29 UTC (1,208 KB)
[v2] Tue, 7 Mar 2023 07:04:32 UTC (1,556 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.