Computer Science > Machine Learning
[Submitted on 1 Dec 2022 (v1), last revised 23 Apr 2024 (this version, v3)]
Title:Differentially-Private Data Synthetisation for Efficient Re-Identification Risk Control
View PDF HTML (experimental)Abstract:Protecting user data privacy can be achieved via many methods, from statistical transformations to generative models. However, all of them have critical drawbacks. For example, creating a transformed data set using traditional techniques is highly time-consuming. Also, recent deep learning-based solutions require significant computational resources in addition to long training phases, and differentially private-based solutions may undermine data utility. In this paper, we propose $\epsilon$-PrivateSMOTE, a technique designed for safeguarding against re-identification and linkage attacks, particularly addressing cases with a high \sloppy re-identification risk. Our proposal combines synthetic data generation via noise-induced interpolation with differential privacy principles to obfuscate high-risk cases. We demonstrate how $\epsilon$-PrivateSMOTE is capable of achieving competitive results in privacy risk and better predictive performance when compared to multiple traditional and state-of-the-art privacy-preservation methods, including generative adversarial networks, variational autoencoders, and differential privacy baselines. We also show how our method improves time requirements by at least a factor of 9 and is a resource-efficient solution that ensures high performance without specialised hardware.
Submission history
From: Tânia Carvalho [view email][v1] Thu, 1 Dec 2022 13:20:37 UTC (874 KB)
[v2] Fri, 29 Sep 2023 10:00:07 UTC (794 KB)
[v3] Tue, 23 Apr 2024 16:22:07 UTC (1,913 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.